North Penn School District
 Elementary Math Parent Letter
 Grade 6

 Unit 2 - Chapter 4: Ratios and Rates

 Unit 2 - Chapter 4: Ratios and Rates}

Examples for each lesson:

Lesson 4.1

Model Ratios

Daniel is growing tulips and daffodils in a pot.
For every 3 tulips he plants, he plants 1 daffodil. How many daffodils will he plant if he plants 12 tulips?

Step 1 Make a model and write the ratio. The ratio of tulips to daffodils is $3: 1$.

Step 2 Model the number of daffodils Daniel will plant if he plants 6 tulips.

Step 3 Use the model and ratio to make a 3 tulips, there is 1 daffodil.

Abstract

table. The table shows that for every

Tulips	3	6	9	12
Daffodils	1	2	3	4

Step 4 Find 12 tulips on the table. The number of daffodils is 4 .

Step 5 Write the new ratio. The new ratio is 12:4.

So, if Daniel plants 12 tulips, he will plant 4 daffodils.

Lesson 4.2

Ratios and Rates

A ratio is a comparison of two numbers by division.
Ratios can compare parts of a whole or compare one part to the whole.
A rate is a ratio that compares two numbers that have different units.

Lesson 4.3

Equivalent Ratios and Multiplication Tables

To find equivalent ratios, you can use a multiplication table or multiply by a form of 1 .

Write two ratios equivalent to $10: 14$. Use a multiplication table
Step 1 Find 10 and 14 in the same row.

Step 2 Look at the columns for 10 and 14.
Choose a number
from each column
Make sure that the 5 and $7 \quad 30$ and 42 numbers you choose are in the same row.

Step 3	Write the new ratios.	$5: 7$
$0: 42$		

	1		2	3	4	4	5	6	7	8		9
1	1		2	3				6		8	3	
2	2		4	6		81	10	12	14	4,16	618	18
3	3		6	9		12	15	18	21	24	4	27
4	4		8	12		16	20	24	28	32	32	36
5	5		0	15		20	25	30	35	3	04	45
6	6		12	18		24	30	36	42	48	8	54
7	7		14	21		28	35	42	49	56		63
8	8		16	24		32	40	48	56	64		
9			8	27		36		54				81

Use multiplication or division.
Multiply Divide
Step 1 To multiply or divide by a form of 1 , multiply or divide the numerator and denominator by the same number.

Step 2 Write the new ratios.

$\frac{10 \times 3}{14 \times 3}=\frac{30}{42}$	$\frac{10 \div 2}{14 \div 2}=\frac{5}{7}$
$\frac{30}{42}$	$\frac{5}{7}$

More information on this strategy is available on Animated Math Model \#15.

Lesson 4.4

Problem Solving • Use Tables to Compare Ratios

Use tables of equivalent ratios to solve the problem.

Kevin's cookie recipe uses a ratio of 4 parts flour to 2 parts sugar.
Anna's recipe uses 5 parts flour to 3 parts sugar. Could their recipes make the same cookies?

Read the Problem	Solve the Problem					
What do I need to find?	Make a table of equivalent ratios for each recipe.					
I need to find out if the ratio of \qquad to\qquad in Kevin's recipe is equivalent to	Kevin's Recipe					
	Flour	4	8	12	16	20
	Sugar	2	4	6	8	10
the ratio in	Anna's Recipe					
	Flour	5	10	15	20	25
What information do I need to use?	Sugar	3	6	9	12	15
I will use the__ of to	Find an amount of flour that is in both tables.					
	Write the ratio for Kevin's recipe. 20					
How will I use the information?	Write the ratio for Anna's recipe. 20					
I will make __ to compare the	Are the ratios the same?					
	So, their recipes \qquad make the same cookies.					

More information on this strategy is available on Animated Math Model \#15.

Lesson 4.5

Algebra • Use Equivalent Ratios

You can find equivalent ratios by using a table or by multiplying or dividing the numerator and denominator by the same number.

```
Kate reads 5 chapters in 2 hours. At this rate, how many
chapters will she read in 6 hours?
```

Step 1 Make a table of equivalent ratios.

Chapters read	5	10	15
Time (hours)	2	4	6
$2 \cdot 2$			

Step 2 Find 6 hours in the table. Find the number of chapters that goes with 6 hours: 15

Step 3 Write the new ratio: $\frac{15}{6}$

The ratios $\frac{5}{2}$ and $\frac{15}{6}$ are equivalent ratios. So, Kate will read 15 chapters in 6 hours.
Julian runs 10 kilometers in 60 minutes. At this pace, how
many kilometers can he run in 30 minutes?

Step 1 Write equivalent ratios with a missing value.

Step 2 Divide the numerator and denominator by 2 to write the ratios using a common denominator.

The denominators are the same, so the numerators are equal to each other.

$$
\begin{array}{r}
\frac{10}{60}=\frac{\square}{30} \\
\frac{10 \div 2}{60 \div 2}=\frac{\square}{30}
\end{array}
$$

$$
\frac{5}{30}=\frac{\square}{30} \rightarrow \square=5
$$

So, Julian can run 5 kilometers in 30 minutes.

Lesson 4.6

Find Unit Rates

When comparing prices of items, the better buy is the item with a lower unit price.

Determine the better buy by comparing unit rates.

A 12-ounce box of Wheat-Os costs $\$ 4.08$, and a 15 -ounce box of Bran-Brans costs $\$ 5.40$. Which brand is the better buy?

Step 1 Write a rate for each.

Step 2 Write each rate as a unit rate.

$$
\frac{\$ 4.08 \div 12}{120 z \div 12}=\frac{\$ 0.34}{10 z}
$$

Divide the numerato and denominator by the number in the denominator.

Step 3 Choose the brand that costs less.

So, Wheat-Os are the better buy.

Algebra• Use Unit Rates

You can find equivalent ratios by first finding a unit rate.

More information on this strategy is available on Animated Math Model \#15.

Lesson 4.8

Algebra • Equivalent Ratios and Graphs

Jake collects 12 new coins each year. Use equivalent ratios
to graph the growth of his coin collection over time.

Step 1 Write an ordered pair for the first year. Ordered pair: $(1,12)$ Let the x-coordinate represent the number of years: 1.
Let the y-coordinate represent the number of coins: 12.

Coins	12	24	36	48	60
Year	1	2	3	4	5

Step 2 Make a table of equivalent ratios.
Step 3 Write ordered pairs for the values in the table.

Step 4 Label the x-axis and y-axis.
Step 5 Graph the ordered pairs as points.

The point $(1,12)$ represents the year Jake started his collection. It shows that he had 12 coins after 1 year.
$(1,12),(2,24),(3,36),(4,48),(5,60)$

Vocabulary

Equivalent ratios - ratios that name the same comparison
Rate - a ratio that compares two quantities measured in different units
Ratio - a comparison of two quantities using division
Unit rate - a rate in which the second quantity in the comparison is one unit
Coordinate plane - a plane formed by a horizontal line called the x-axis and a vertical line called the y-axis

Equivalent fractions - two or more fractions that name the same amount
Ordered pair - a pair of numbers that can be used to locate a point on the coordinate plane
x-coordinate - the first number in an ordered pair, which tells the distance to move right or left from (0, 0)
\mathbf{y}-coordinate - the second number in an ordered pair, which tells the distance to move up or down from (0, 0)

